
Findings from the NYCT - FTA Wheel/Rail Analytics Project

A Research Project Overview



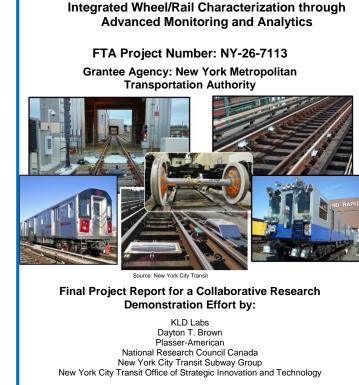
Outline

- The project and team
- Some findings
- Project evaluation criteria
- Future R&D activities

Wheel/Rail Research Project

2 Year SRER Research Project Lasting > 3 Years

- Collaborative Approach
- Multiple organizations with strengths in the required areas
- Multiple Technologies *Strength in Diversity*
- Leveraged prior Machine Vision Experience at NYCT
- Supported Team Analytics
- Balanced Transit Agency and Technology Company "NEEDS" & Benefits



Research Project Report

Final Report Submitted

Two Research Efforts will extend beyond the Period of Performance of the Original Research:

- Experimental Wheel Profiles on the DCC
- TOR Friction Management

November 30, 2018

RAIL TRANSIT SEMINAR . JUNE 18, 2019

WRI 2019

Monitor New York City Transit (NYCT) 7 Line

- 27.5 miles of track;
- 525,000 passengers/weekday;
- Captive Vehicle Fleet of 506 cars
- Up to 27 trains per hour in each direction;

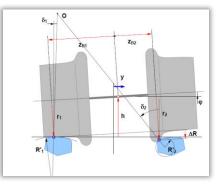
TRANSIT SEMINAR .

JUNE

- Elevated tracks and tunnels;
- 24/7 operation requires an optimized maintenance
- 7 partners, 3 years total

Introducing...

THE TEAM



Plasser American

- Effective Conicity analytics
- RFID position reading on TG car

WRI 2**0**19

On-Vehicle Data Acquisition

Data Collection Consist (DCC)

2 instrumented wheelsets (IWS)

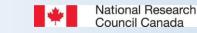
 Provides accurate measurements of wheel/rail contact forces (vertical, longitudinal, lateral)

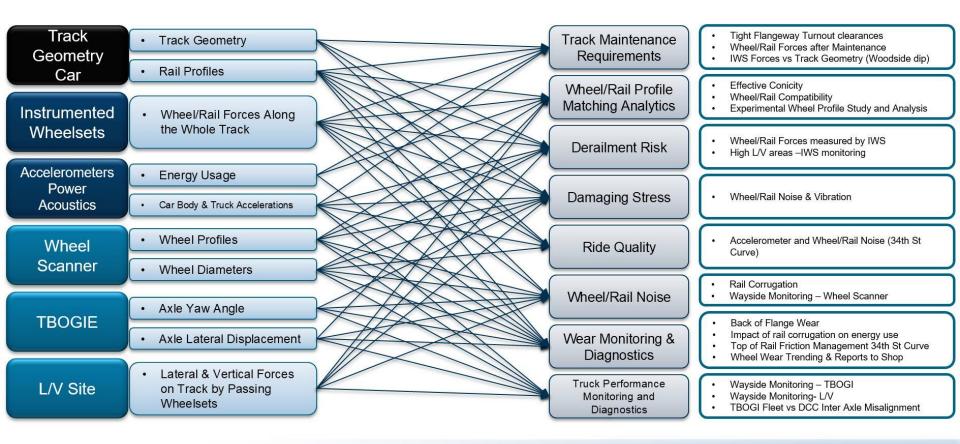
Consist Data Acquisition

 Accelerometers, acoustic recording equipment and propulsion energy recording equipment

Part of an 11 car consist in revenue service

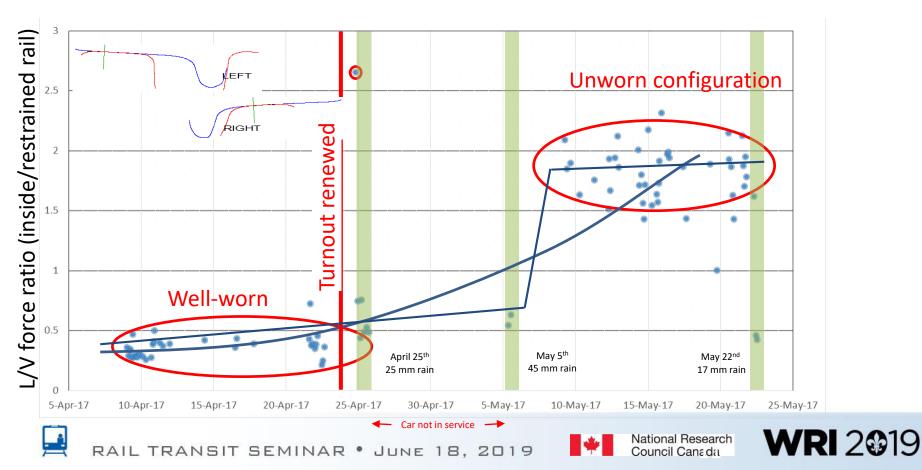
 Daily dedicated real-time performance data acquisition

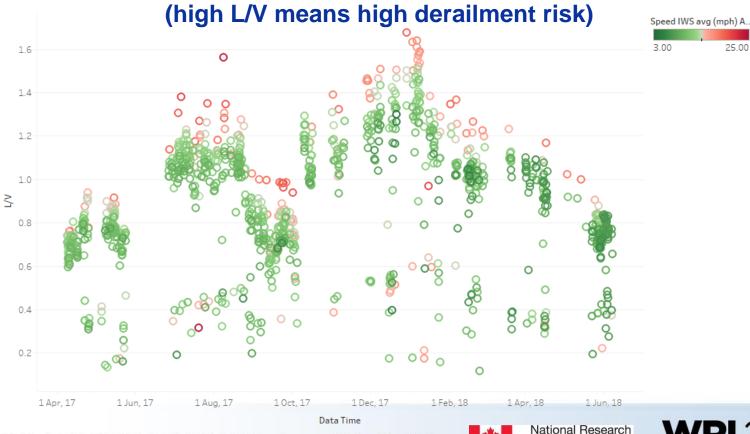




RAIL TRANSIT SEMINAR . JUNE 18, 2019

National Research


WRI 20019



WRI 2**3**19

Trending L/V Ratio with Date and Speed

JUNE 18, 20

RAIL

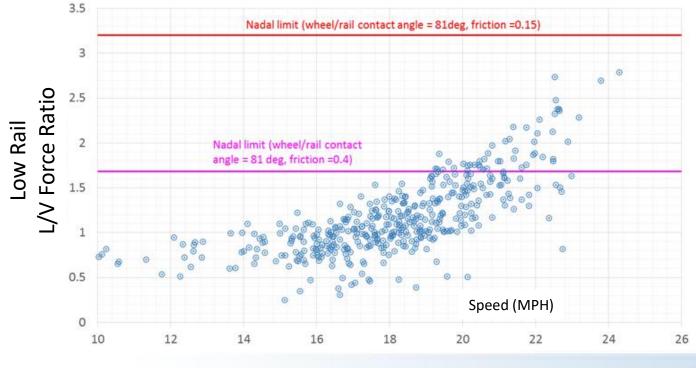
TRANSIT

SEMINAR

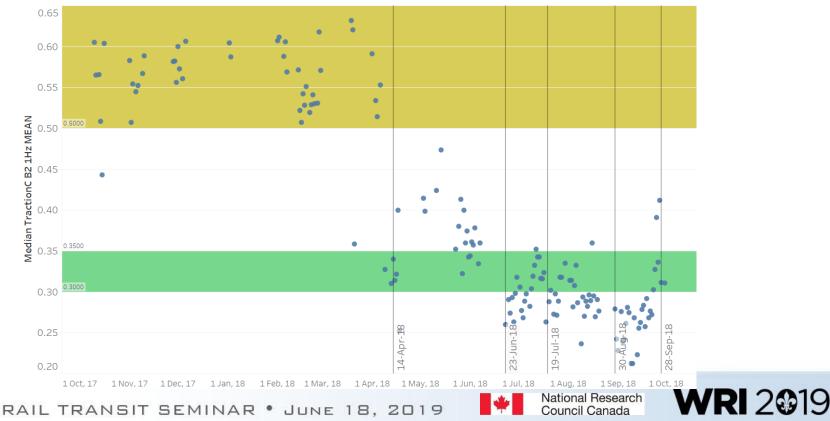
Council Canada

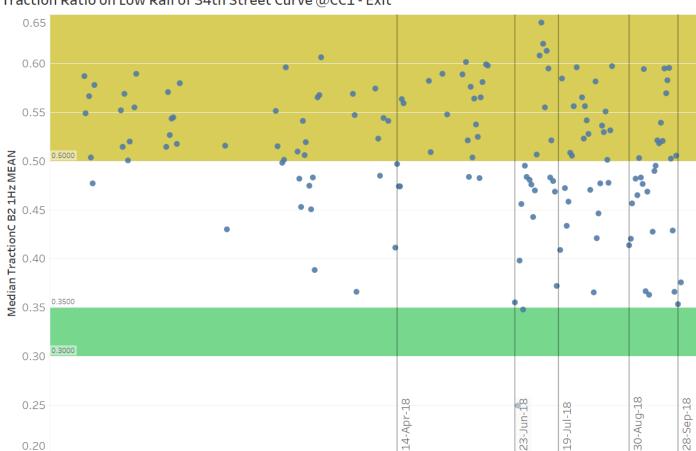
25.00

Willets Point Derailments


Contributing factor	Monitoring tool
Renewed track geometry	IWS
Wheel profile wear	Wheelscan
Back of flange geometry	Wheelscan
Effect of speed	IWS
Friction conditions	IWS, TGC video system
Flangeway clearance	IWS, TG Car
Position in trainset	L/V TBOGIE
Track geometry perturbations	Accelerometers

Quantified Operational Risks: 60 m radius Restrained Curve


RAIL TRANSIT SEMINAR . JUNE 18, 2019

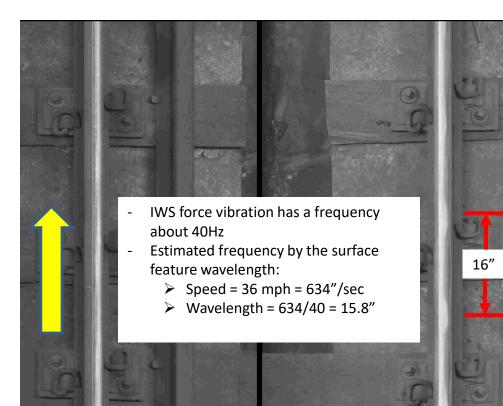


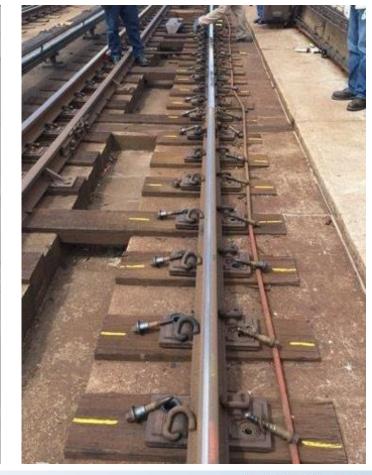
WRI 2**0**19

Effectiveness of Friction Management

Traction Ratio on Low Rail of 34th Street Curve @CC1 Entry

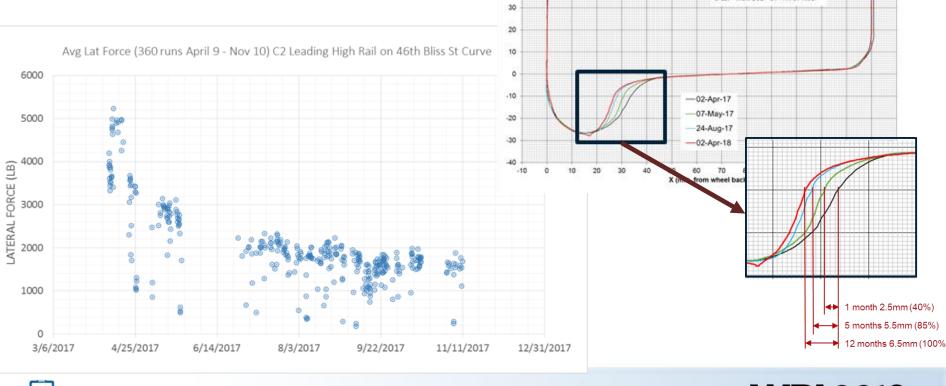
Traction Ratio on Low Rail of 34th Street Curve @CC1 - Exit


1 Oct, 17 1 Nov, 17 1 Dec, 17 1 Jan, 18 1 Feb, 18 1 Mar, 18 1 Apr, 18 1 May, 18 1 Jun, 18 1 Jul, 18 1 Aug, 18 1 Sep, 18 1 Oct, 18



RAIL TRANSIT SEMINAR . JUNE 18, 2019

WRI 2**0**19



RAIL TRANSIT SEMINAR . JUNE 18, 2019

• **WRI** 2**0**19

Trending the Effect of Wheel Wear

RAIL TRANSIT SEMINAR . JUNE 18, 2019

WRI 2**0**19

C Car - No.7502 - L4 - NYCT IWS

HOW DID WE DO?

Work Schedule & Key Milestones

Table 1: Project Milestones and Actual Completion Sequence

	Milestones and Interim Milestone Completion Snapshot Milestone Completion Dates												
				Oct 1 2016	Jan 1 2017	1-Apr-17	1-Jan-18	1-Apr-18	1-Jul-18	1-Oct-18	1-Jan-19		
Mile		Or	iginal	Revised	Revised	Revised	Revised	Revised	Reviseed	Reviseed	Reviseed	Actual	
Stone		Start	Completion	Completion	Completion	Completion	Completion	Completion	Completion	Completion	Completion	Completion	
		Date	Date	Fcst	Fcst	Fcst	Fcst	Fcst	Fcst	Fcst	Fcst	Date	
1	Notice to Proceed	1-Sep-15										21-Aug-15	
2	Phase I: Instrumentation of Vehicles	15-Sep-15	1-Mar-17										
	- Research Consist instrumented with on-board recorders and initiate data collection		1-Feb-16	1-Nov-16	Сотр	oleted	30						
	-Gate Meeting 1 Month 6 ~ Review of on-train Data Collection Deliverables		15-Apr-16	Comp	leted			25-Aug-16					
	-In-Track Wheel Profile System Commissioned and Wheel Profile Data collection initiated		1-Aug-16	15-Nov-16	25-Jan-17	Completed						19-Jan-17	
	-Way-side L/V anfd TBOGI devices opeational and data collection initiated		1-Sep-16	15-Nov-16	1-Mar-17	20-May-17							
	- Instrumented Wheel Sets instaled and commissioned on DCC		1-Nov-16	15-Feb-17	1-Mar-17	Completed			31-Mar-17				
	- Integrated Wheel Profile, TGC and way-side devices, software integration completed		2-Jan-17	25-Feb-17	1-Mar-17	1-Jun-17	Completed 1					11/30/2017	
	- Analytics Functionality is ready to support Phase II Data Collection of "As-Is"		1-Mar-17	1-Mar-17	1-Mar-17	1-Jun-17	Completed	Completed					
3	Phase II Optimization of the Analytics and Data Collection	16-Mar-17	1-May-17										
	- Review of Phase I Deliverables and Establishment of Phase II Objectives		16-Mar-17				Completed					11/1/2017	
	- Phase II "As-Is" Data Collection and Analytics Systems Demonstrations		1-May-17				Completed		11/30/2017				
4	Phase III: Demonstration of Improved Wheel/Track Management	1-May-17	1-Aug-17										
	-Review of Phase II Deliverables and Establishment of Phase III Objectives		15-May-17				1/10/2018	Completed				1/15/2018	
	-Phase III Modification A: 34th Street Curve Analytics & System Demonstration		3-Jul-17				3/15/2018	6/30/2018	7/31/2018	11/30/2018	12/30/2018	12/30/2018	
	- Phase III Modification B Wheel Profile Change with Analytics & System Demonstration		1-Aug-17				3/15/2018	6/30/2018	9/30/2018	12/10/2018	1/31/2019	1/30/2109	
5	Final Report	1-Aug-17	1-Sep-17				3/31/2018	9/30/2018	9/30/2018	12/15/2018	2/28/2019	2/28/2019	

Key Milestones were met, but Schedule Slippage was experienced.

Project Evaluation Criteria

- Operational Safety
- Infrastructure and equipment resiliency
- Reduced energy use
- Increased service life of assets
- Reduced cost of asset ownership
- Improve customer service and customer experience

PEC – Operational Safety

- Rail Corrugations and high lateral forces → trial TOR Friction Management
- Identified back of flange (BOF) wear issues.
- L/V forces ↑ with execution of track maintenance
- Excessive speed \uparrow higher risk
- Tight gauge contributes to instability

PEC Reduce Energy Use

- Use of TBOGI to identify "worse performers"
- Effective conicity analytics identify locations at higher risk for hunting.
- DCC traction energy monitoring shows
 - Corrugation increases energy consumed in one curve by 7%.
 - Friction management measurably reduce energy requirements.

PEC: Recapture of Investment (Value Proposition)

Estimated Maintenance Cost Avoidance resulting from Research work:

 Elimination of one fleet wide (506 cars) non-optimum wheel replacement before planned SMS

L	ABOR Estimate		MATERIAL Estimate	
797 Man Hours for T	ruck Work in SMS Cycle/Car		\$55,413 Material Cost/Car for Truck SMS Work	
\$35.00 Hourly wage est	imate			
\$27,895 Total Labor Cost	/car for Truck SMS			
506 # Cars in #7 Line Fleet			506 #Cars in #7 Line Fleet	
\$14,114,870 Total SMS Cost j	ust for Labor on Truck Work	\$28,	038,978 Total Materials Cost just for Truck Work in SM	VIS Cycle
50% Estimate of Labo	or (%SMS Truck Labor) for No	ptimum Wheel Change	10.00% Estimate of Wheel and axle costs in SMS Cyc	le Materia
\$7,057,435		\$2,8	03,898	
Estimated Cost A	voidance of one wheel	ange between SMS Cycle: \$9,86	1,333	

WRI 2**1**9

24

PEC: Recapture of Investment (Value Proposition)

Estimated Maintenance Cost Avoidance resulting from Research work:

- Avoidance of 30 Day Mid-Cycle Manual Wheel Measurements: ~ \$250,000/yr.
- Monitoring and Reduction of Wheel/Rail performance associated with Derailment Risk
- Maintenance Cost Reductions associated with increasing data driven Condition-Based Maintenance

25

PEC: Improve Customer Service and Customer Experience

- Higher noise areas identified by external microphones may prompt intervention (e.g. grinding or friction management
- Excessive noise, truck hunting and vertical vibration may be identified and reduced
- Monitoring permits high force/risk areas to be addressed proactively, increasing reliability

FUTURE APPLICATIONS AND R&D ACTIVITIES

Asset Management

- Baseline performance (forces, vibration, etc.)
- Establish maintenance limits
- Monitor, trend report on condition/performance
- Recommend/program interventions
 - Wheel retruing
 - Truck inspections
 - Rail grinding (corrugation, profile)
 - Friction management

State of Good Repair

- Requires
 - Metrics for evaluating component and system performance
 - Regular reporting
- Autonomous (performance based) systems
- Programmed metrics over several data streams
- Set (prescriptive and performance-based) maintenance and safety limits
- Automatic/continuous reporting

Other Follow-on Research

- Data Analytics
 - Wear, corrugation, defects, safety, vehicle performance, energy
- Component and system design optimization
 - Root cause analysis for above problems, design solutions
- Data reporting and implementation programs to visualize and report
 - Automated data collection
 - Rail safety standards
 - State of Good Repair reporting

Research Project Contact Information

National Research Council, Canada Dayton T. Brown KLD Labs WID New York City Transit Office of Strategic Innovation and Technology (Project Lead)

MOW Track Engineering

University of Delaware

Thomas.Lamb@NYCT.com Antonio.Cabrera@NTCT.com dramz@UDel.edu

Eric.Magel@nrc-cnrc.gc.ca

KCummings@DTB.com

MWegal@KLDLabs.com

Denis.Daoust@WID.ca

FTA SRER Research Program Management Raj.Wagley@dot.gov

Thank you!

